







## IRCBG\_21068 XV Incontro della Rete Insieme per l'Allattamento "Allattamento fra Care e Scienza"

### Sicurezza Chimica e Microbiologica della formula





Dal 20 luglio 2016 i baby food sono regolamentati dal Regolamento (UE) 609/2013 (Food for Specific Group - FSG) che ha abrogato la Direttiva 2009/39/CE.

29.6.2013

IT

Gazzetta ufficiale dell'Unione europea

L 181/35

#### REGOLAMENTO (UE) N. 609/2013 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO

del 12 giugno 2013

relativo agli alimenti destinati ai lattanti e ai bambini nella prima infanzia, agli alimenti a fini medici speciali e ai sostituti dell'intera razione alimentare giornaliera per il controllo del peso e che abroga la direttiva 92/52/CEE del Consiglio, le direttive 96/8/CE, 1999/21/CE, 2006/125/CE e 2006/141/CE della Commissione, la direttiva 2009/39/CE del Parlamento europeo e del Consiglio e i regolamenti (CE) n. 41/2009 e (CE) n. 953/2009 della Commissione

Il Regolamento (UE) 127/2016, ha integrato il Reg. FSG in merito alle specifiche di composizione e di informazione per le formule per lattanti e le formule di proseguimento con decorrenza a partire dal 2020 e 2021

"Gli alimenti per lattanti e gli alimenti di proseguimento non devono contenere alcuna sostanza in quantità tale da mettere a rischio la salute dei lattanti e dei bambini".

le formule di proseguimento e per quanto riguarda le prescrizioni relative alle informazioni sull'alimentazione del lattante e del bambino nella prima infanzia



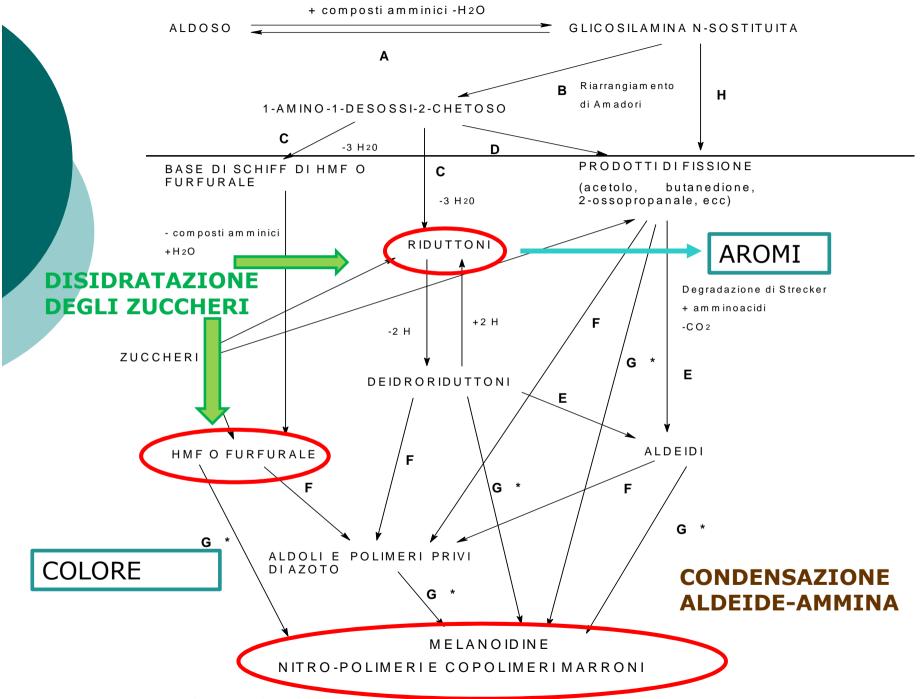
#### SCIENTIFIC REPORT OF EFSA

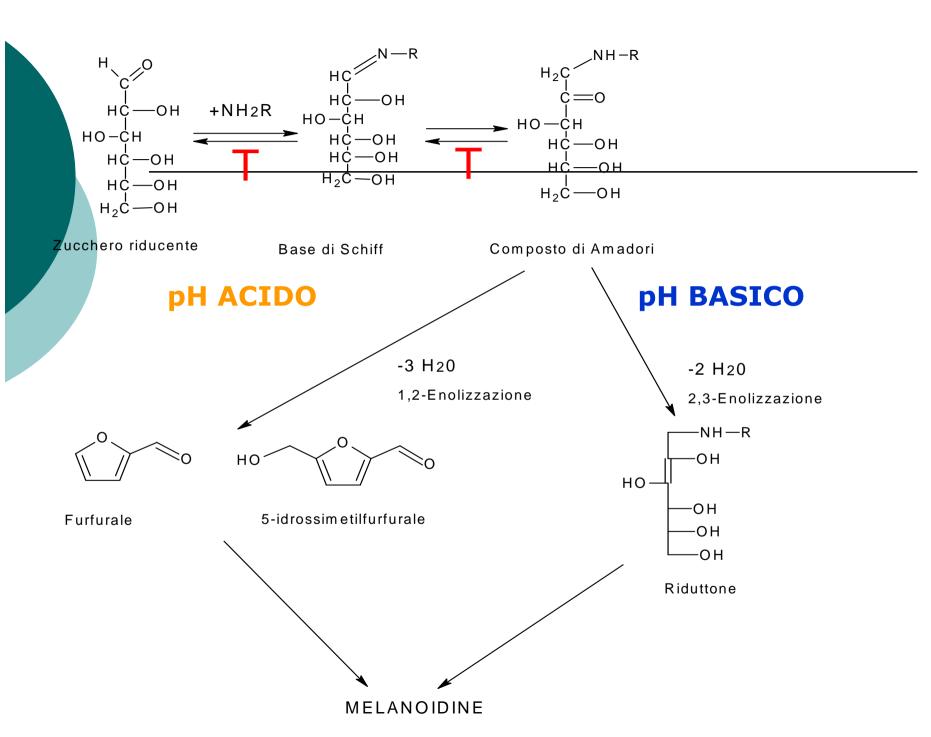
## Update on furan levels in food from monitoring years 2004-2010 and exposure assessment<sup>1</sup>

European Food Safety Authority<sup>2, 3</sup>

European Food Safety Authority (EFSA), Parma, Italy

| Food group                         | AT | BE  | CY | CZ | DE  | DK | ES  | EE | FI | GB | GR | HU | IE  | IT      | LT           | NL | NO | PL  | SK | SI | Total |
|------------------------------------|----|-----|----|----|-----|----|-----|----|----|----|----|----|-----|---------|--------------|----|----|-----|----|----|-------|
| Coffee instant <sup>1</sup>        | 0  | 61  | 0  | 0  | 23  | 7  | 0   | 0  | 0  | 6  | 0  | 0  | 10  | 2       | 0            | 0  | 0  | 0   | 0  | 0  | 109   |
| Coffee roasted bean 1              | 0  | 4   | 0  | 8  | 0   | 0  | 0   | 0  | 0  | 7  | 0  | 1  | 7   | 0       | 0            | 0  | 0  | 0   | 2  | 1  | 30    |
| Coffee roasted ground <sup>1</sup> | 8  | 12  | 5  | 0  | 0   | 1  | 4   | 14 | 0  | 23 | 12 | 0  | 3   | 17      | 0            | 0  | 0  | 0   | 8  | 3  | 110   |
| Coffee not specified <sup>1</sup>  | 0  | 43  | 24 | 0  | 483 | 3  | 23  | 0  | 1  | 0  | 0  | 0  | 12  | 5       | 2            | 0  | 0  | 0   | 0  | 0  | 596   |
| Coffee brew                        | 8  | 0   | 0  | 0  | 0   | 0  | 0   | 10 | 0  | 0  | 12 | 0  | 42  | <u></u> | 0            | 0  | 0  | 0   | 10 | 7  | 90    |
| Baby food                          | 12 | 158 | 30 | 13 | 679 | 4  | 17  | 18 | 20 | 30 | 14 | 0  | 251 | 22      | 0            | 10 | 24 | 301 | 0  | 15 | 1618  |
| Infant formula                     | 0  | 0   | 0  | 0  | 0   | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 1   | 9       | 0            | 1  | 0  | 0   | 0  | 0  | 11    |
| vegetables                         | Û  | 09  | 0  | 7  | 10  | 11 | - 3 | 0  | 2  | 14 | 1  | Ü  | 17  | g       | <b>"</b> 5 - | 9  | 7  | Û   | 10 | 3  | 192   |
| Fruits                             | 2  | 65  | 0  | 0  | 30  | 2  | 0   | 0  | 3  | 1  | 1  | 0  | 8   | 13      | 2            | 10 | 0  | 0   | 5  | 0  | 142   |
| Vegetable juices                   | 0  | 49  | 0  | 0  | 30  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0       | 0            | 0  | 0  | 0   | 3  | 0  | 82    |


#### LA REAZIONE DI MAILLARD


- Scoperta nel 1912 da Louise-Camille Maillard
- È una serie di complesse reazioni tra gruppi –NH2 liberi e composti carbonilici, che avviene ad elevate temperature.
- Viene chiamata anche "imbrunimento non enzimatico".
- I prodotti finali della reazione sono chiamati MELANOIDINE;
   macromolecole ad elevato PM dal colore scuro e il caratteristico odore di pane al forno o caffè tostato.











#### STADI DELLA REAZIONE (divisione secondo Hodge)

STADIO INIZIALE: Formazione di prodotti incolore (280nm)

Reazione A: condensazione zucchero-ammina

Reazione B: riarrangiamento di Amadori



#### STADIO INTERMEDIO: Formazione di prodotti giallognoli (360nm)

Reazione C: disidratazione degli zuccheri

Reazione D: frammentazione degli zuccheri

Reazione E: degradazione di Strecker degli aminoacidi

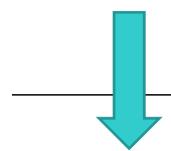


#### STADIO FINALE: Formazione di prodotti marroni (420nm)

Reazione F: condensazione aldolica

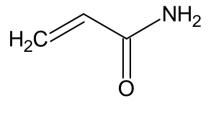
Reazione G: condensazione aldeide-ammina e formazione di composti eterociclici azotati

Recentemente si è scoperta un'ulteriore reazione:


Reazione H: rottura radicalica degli intermedi della razione di Maillard



## FORTE DIPENDENZA DELLA REAZIONE DA TEMPERATURA, PH, TEMPO.


Non è possibile prevedere a priori quali prodotti si formeranno alla fine.

#### PROPRIETA' DEI PRODOTTI DELLA REAZIONE DI MAILLARD



#### **POSITIVE**

- Capacità antiossidante
- Capacità antibiotica



Acrilamide



**Furano** 

#### **NEGATIVE**

Produzione di composti **potenzialmente** nocivi come:

- Melanoidine
- Acrilamide
- HMF
- Furano
- Composti eterociclici

HMF

#### **IDROSSIMETILFURFURALE (HMF)**

- Solido cristallino incolore, dall'odore di camomilla e il sapore di caramello e burro
- Si forma in cibi ricchi di carboidrati durante una disidratazione acidocatalizzata e nella reazione di Maillard a partire da zuccheri riducenti.
- L'HMF e i suoi metaboliti vengono eliminati con l'urina.

#### TOSSICITA' DELL'HMF

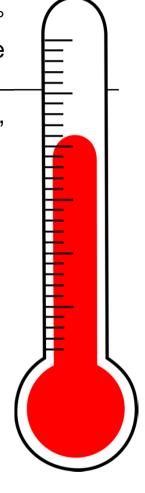
- Sostanza citotossica
- Viene trasformato dalle SULT in 5-[(sulfossi)-metil]furfurale o SMF, metabolita che ha mostrato capacità mutagena e di rottura dei filamenti del DNA.
- Insieme all'Asparagina potrebbe proseguire nella reazione di Maillard portando alla formazione di acrilamide.

#### LIMITI DEL QUANTITATIVO DI HMF NEGLI ALIMENTI

 La concentrazione di HMF non deve superare i 40ppm negli alimenti comuni; per il miele il limite è di 10ppm e per i baby food di 20ppm.








#### 1. Ipotesi dello studio:

- la ricostituzione della formula a temperature superiori a 70° porta ad una aumentata produzione di composti della reazione di Maillard
- perdita di aminoacidi e di potere antiossidante del latte, nonché alla produzione di sostanze potenzialmente tossiche

#### 2. Sviluppo dello studio:

- a) Monitorare la presenza dei composti di Maillard dopo la ricostituzione della formula, valutando 4 temperature di preparazione dell'acqua utilizzata:
- 25°C (T° di controllo)
- 70° (T° raccomandata dall'OMS per la ricostituzione della polvere)
- 80, 90 e 100°C (T° errate utilizzate «inconsapevolmente) durante la preparazione)
- b) Misurare l'attività antiossidante totale delle diverse formule ricostituite

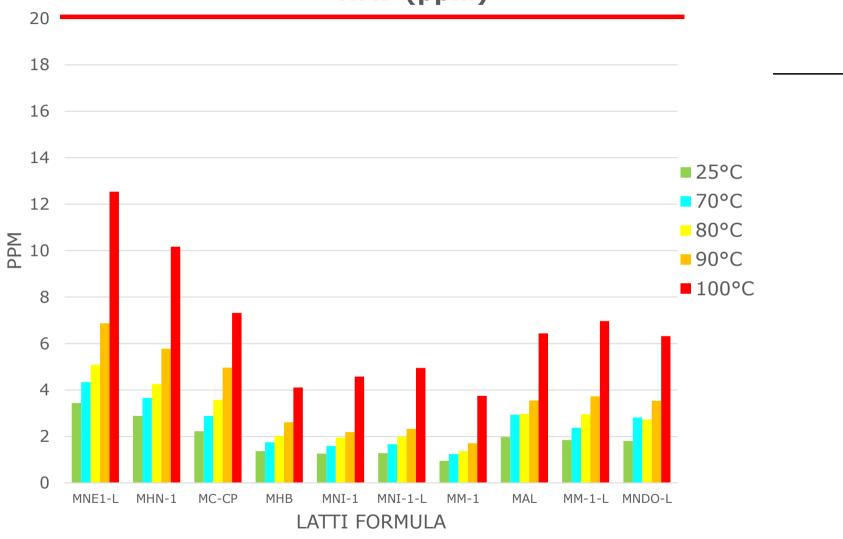


#### **OBIETTIVO 1:**

- > Verificare la presenza di molecole derivanti dalla reazione di Maillard.
- Dosare il contenuto di Furano, HMF e PMT (Prodotti totali della reazioni di Maillard) in numerosi baby food.

#### **CAMPIONAMENTO**

Sono stati utilizzati 10 campioni di latte formula rappresentativi dei maggiori brand in commercio;


- MNE1-L
- MHN-1
- MC-CP
- MHB
- MNI-1
- MNI-1-L
- MM-1
- MAL
- MM-1-L
- MNDO-L

Le formule sono state ricostituite come da indicazioni riportate in etichetta: 1 misurino (circa 4,5g) + 30 mL d'acqua

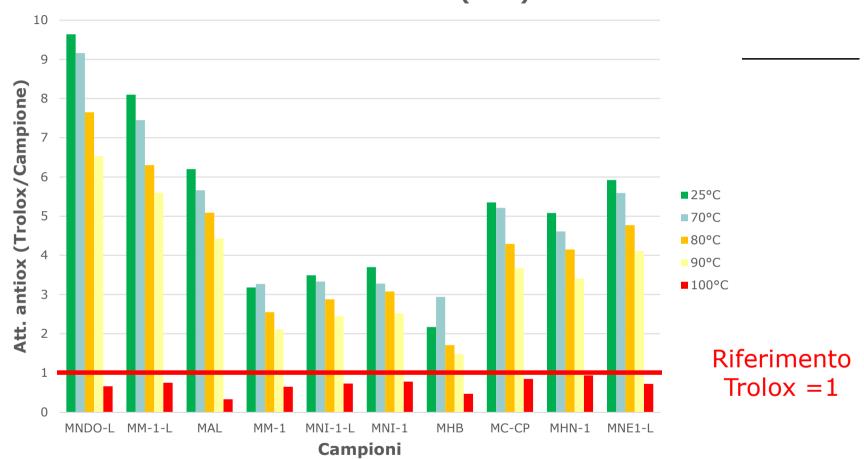
#### RISULTATI (1): HMF

## Le quantità fanno riferimento ad un singolo pasto!





#### RISULTATI (2): Furano


## Le quantità fanno riferimento ad un singolo pasto!

|   |     | FURANO (ppm) ± ds |                 |                 |              |  |  |  |  |
|---|-----|-------------------|-----------------|-----------------|--------------|--|--|--|--|
|   | Cai | mpioni            | 25°C            | 70°C            | 100°C        |  |  |  |  |
|   | MN  | E1-L              | 23,17 ± 2,16    | 61,65 ± 3,65    | 89,17 ± 2,68 |  |  |  |  |
| • | МН  | N-1               | 2,56 ± 0,49     | 5,96 ± 1,03     | 12,14 ±1,56  |  |  |  |  |
|   | МС  | -CP               | 1,98 ± 0,85     | 7,65 ± 1,29     | 9,77 ± 2,20  |  |  |  |  |
|   | МН  | В                 | 1,65 ± 0,26     | 3,81 ± 1,11     | 8,17 ± 1,75  |  |  |  |  |
|   | MN  | I-1               | 1,09 ± 0,33     | 4,22 ± 0,86     | 11,46 ± 2,16 |  |  |  |  |
|   | MN  | I-1-L             | 2,07 ± 0,41     | 6,21 ± 1,17     | 10,75 ± 1,32 |  |  |  |  |
|   | MM  | l-1               | 2,25 ± 1,12     | 5,35 ± 1,08     | 12,53 ± 2,70 |  |  |  |  |
|   | MA  | L                 | $0.97 \pm 0.30$ | $3,55 \pm 0,95$ | 9,25 ± 1,15  |  |  |  |  |
|   | MM  | l-1-L             | 1,69 ± 0,73     | 4,33 ± 0,91     | 13,85 ± 2,24 |  |  |  |  |
|   | MN  | DO-L              | 1.44 ± 0.29     | 3.37± 0.74      | 9.71 ± 1.25  |  |  |  |  |

#### RISULTATI (3): attività antiossidante Le quantità fanno riferimento

Le quantità fanno riferimento ad un singolo pasto!

#### Potere antiradicalico (ARP)



#### Ipotesi: potenziale accumulo di HMF nell'arco giornaliero

|                                                                                          | HMF (70°C) ppm |
|------------------------------------------------------------------------------------------|----------------|
| Età 1° e 2° settimana<br>N° Pasti lattei nelle 24 ore: 6<br>ml di latte per pasto: 90    | 7.5 – 26.04    |
| Età 3° e 4° settimana  <br>N° Pasti lattei nelle 24 ore: 6<br>ml di latte per pasto: 120 | 10 - 34.6      |
| Età 2° mese  <br>N° Pasti lattei nelle 24 ore: 5<br>ml di latte per pasto: 150           | 10.5 – 27.8    |
| Età 3° mese<br>N° Pasti lattei nelle 24 ore: 5<br>ml di latte per pasto: 180             | 12.5 - 31.0    |
| Età 4° e 5° mese  <br>N° Pasti lattei nelle 24 ore: 5<br>ml di latte per pasto: 210      | 14.6 – 30.4    |
| Età 6° mese  <br>N° Pasti lattei nelle 24 ore: 4<br>ml di latte per pasto: 250           | 16.7 – 29.7    |

Valori oltre soglia di riferimento!

#### CONCLUSIONI

- Alcuni composti della Maillard (HMF e Furano) sono riscontrabili in tutti i campioni analizzati già nelle formule non ricostituite
- > La loro concentrazione incrementa all'aumentare della temperatura
- ➤ A 70°C l' HMF è presente in quantità rilevabile ma al di sotto del valore massimo considerato di riferimento (20 ppm), tuttavia tale quantità è legata ad un singolo pasto
- > Uno studio prospettico nell'arco della giornata potrebbe porterebbe ad un superamento del valore massimo di riferimento
- ➤ La capacità detossificante di un adulto rende tali concentrazioni (Furano e HMF) non significative, al contrario nel lattante le stesse concentrazioni sono considerevoli alla luce della ridotta capacità detossificante dei piccoli.

# GRAZIE PER L'ATTENZIONE