

Inormation Security and Blockchain

Andrea Vitaletti Università degli studi di Roma "La Sapienza" vitaletti@diag.uniroma1.it

Special Thanks to prof. Hervé Debar

PART I Blockchain in about 10 slides

La sicurezza informatica dei dispositivi medici

Evolution of computing

Source: IBM

Consensus in P2P

"If two **incompatible** facts arrive in th network, the first one to be recorded wins."

Source: https://marmelab.com/

Pending facts

Confirmed facts

Blockchain Properties

La sicurezza informatica dei dispositivi medici

Types of Blockchain

Source: blockchainappfactory.com

Blockchain is not a DB

- CRUD vs CRAB
- Centralized vs Decentralized
- Permissioned vs permissionless
- However can guarantee some properties of a DB
 - Integrity of data
 - Time stamp

Do We need the Blockchain?

Consensus and Verification at scale

From App to Dapp the "world

computer"

Apps

(classically centralized)

DApps (decentralized)

Source: Héctor Ugarte on ResearchGate

Source: Medium

La sicurezza informatica dei dispositivi medici

. . .

Smart Contracts

```
pragma solidity ^0.4.16;
contract MyToken {
    // This creates an array with all balances
    mapping (address => uint256) public balanceOf;
    // Initializes contract with initial supply tokens to the creator of the contract
   function MyToken(
        uint256 initialSupply
   ) {
        balanceOf[msq.sender] = initialSupply;
                                                            // Give the creator all initial tokens
    // Send coins
   function transfer(address to, uint256 value) {
        require(balanceOf[msq.sender] >= value);
                                                           // Check if the sender has enough
       require(balanceOf[ to] + value >= balanceOf[ to]); // Check for overflows
       balanceOf[msg.sender] -= value;
                                                           // Subtract from the sender
       balanceOf[ to] += value;
                                                           // Add the same to the recipient
```

- Computer programs that may encode agreements, policies, rules and penalties that can not be arbitrarily altered once agreed and autonomously run on the blockchain.
- Transfer digital assets between parties

Oracles: in-chani vs

Source: Hackernoon

La sicurezza informatica dei dispositivi medici

Source: blokt

Blockchain and GDPR

- Data Controller vs Decentralized
- Right to erasure (art 17) and rectification (16) vs immutability
- Minimization vs Append-Only
- Blockchain and the General Data Protection Regulation A study by EU*

^{*} https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)634445_EN.pdf

PART II Blockchain in Healthcare A case study on medical device traceability

Plenty of possibilities

Source: The Blockchain Healthcare Ecosystem by SHERPA PROTOCOL

Medical Device Traceability

- EU Medical Device Regulation MDR (EU) 2017/745
- All medical devices covered by the EU MDR must carry a Unique Device Identifier (UDI) to ensure identification and allow for traceability.
- EU "Database" of all medical devices
- May 2020: MDR date of application

Unique Device Identification (UDI)

Source: https://www.nist.gov/cyberframework/new-framework

Classification of Vulnerabilities

	CVE	CWE	cvss
Full Name	Common Vulnerabilities and Exposures	Common Weaknesses Enumeration	Common Vulnerabilities Scoring System
What is it?	A dictionary of publicly known security vulnerabilities and exposures.	A community-developed dictionary of software weakness types.	A vendor-agnostic industry open-standard designed to convey vulnerability severity.
Main Benefit	Easier to share vulnerability data across different databases and tools. Different security tools can now "talk" to each other using a common language.	Provides a standard measuring stick for software security.	Helps determine urgency and priority of response when vulnerabilities are detected.
Solution	Provides a baseline for evaluating the coverage of an organization's security tools.	Provides a common baseline for weaknesses identification, mitigation and prevention efforts.	Solves the problem of multiple incompatible scoring systems.
More information	http://cve.mitre.org/index.html	https://cwe.mitre.org	http://www.first.org/cvss

CVE: Common Vulnerabilities and Exposures

- Dictionary of vulnerabilities found in software
 - Over 120000 entries since 1999
- Specific (product, version)
- Identifier: CVE-<year>-<number>
- Maintained by MITRE
 - https://cve.mitre.org/
 - https://cve.mitre.org/cve/search_cve_list.html
- Nowadays, about 15000 new entries assigned per year

CVSS: Common Vulnerabilities Scoring System (version 3)

• Standardized representation of the impact of a vulnerability

See: https://www.recordedfuture.com/cvss-scores-guide/ Source: prof. Hervé Debar

CVSS: Common Vulnerabilities Scoring System (version 3)

Scoring: https://www.first.org/cvss/calculator/3.0

CVSS v3.0 Calculator [?]	Medium 4.3	
Attack Vector [?]	Scope [?]	
Network Adjacent Local Physical	Unchanged Changed	
Attack Complexity [?] Low High	Confidentiality [?] None Low High	
Privileges Required [?] None Low High	Integrity [?] None Low High	
User Interaction [?] None Required	Availability [?] None Low High	

Source: prof. Hervé Debar

CWE: Common Weakness Enumeration

- Taxonomy of vulnerabilities
 - About 1000 entries
- Different abstraction levels
 - Base/variant: « fundamental » concepts
 - Composite: realization of vulnerability requires multiple steps
 - Graph/view: agregates over the dataset
- Maintained by MITRE
 - https://cwe.mitre.org/
- Aggregate organization in views
 - Partial coverage of structure

Source: prof. Hervé Debar

2019 CWE Top 25 (excerpt)

Rank	ID	Name	Score
[1]	CWE-119	Improper Restriction of Operations within the Bounds of a Memory Buffer	75.56
[2]	<u>CWE-79</u>	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')	45.69
[3]	<u>CWE-20</u>	Improper Input Validation	43.61
[4]	CWE-200	Information Exposure	32.12
[5]	CWE-125	Out-of-bounds Read	26.53
[6]	<u>CWE-89</u>	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')	24.54
[7]	CWE-416	Use After Free	17.94
[8]	CWE-190	Integer Overflow or Wraparound	17.35
[9]	<u>CWE-352</u>	Cross-Site Request Forgery (CSRF)	15.54
[10]	CWE-22	Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')	14.10
[11]	<u>CWE-78</u>	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')	11.47
[12]	CWE-787	Out-of-bounds Write	11.08
[13]	CWE-287	Improper Authentication	10.78
[14]	CWE-476	NULL Pointer Dereference	9.74
[15]	CWE-732	Incorrect Permission Assignment for Critical Resource	6.33
[16]	CWE-434	Unrestricted Upload of File with Dangerous Type	5.50
[17]	<u>CWE-611</u>	Improper Restriction of XML External Entity Reference	5.48

Conclusions

- Blockchain is a unique and disruptive opportunity
- Blockchain is not a panacea
- Blockchain requires specific expertise
- Still some technical problems: scalability, bandwidth, oracles, smart contracts
- Applicability to medical device traceability appears promising