

'Rischio residuo di anomalie cromosomiche dopo test di screening negativo per le maggiori aneuploidie'

Francesca Romana GRATI, Ph.D., ErCLG R&D Director TOMA Advanced Biomedical Assays, S.p.A. fgrati@tomalab.com

OUTLINES

Discuss on the 'a priori' and 'post-test' or 'residual risk' after a negative test result

Implications of the residual risk for pre-test counseling before

screening test for common aneuploidies

Support to women's decision autonomy

Resources

Prenatal diagnosis of chromosome abnormalities

The current standard test is the karyotype/CMA on fetal samples:

- Chorionic villi sampling (CVS): 11-13wg
- Amniotic fluid sampling (AF): 16-18wg

◆ AF and CVS are carried out for a variety of reasons:

- fetal US abnormality/ies
- previous affected fetus/child
- parent carrier of a chromosome abnormality
- ...

Main indication: diagnosis of fetal aneuploidies, primarily trisomy 21

MATERNAL AGE AND TRISOMIES

♦ An association between maternal age and trisomies: proneness of older oocytes to maternal meiosis I and II non-disjunction errors.

Hassold et al, Ann Hum Genet. 1980 Jul;44(Pt 1):29-36; Hassold T, Hunt PA, Sherman S. Curr Opin Genet Dev. 1993 Jun;3(3):398 103; Lamb et al Human Molecular Genetics, 1997, 1391–1399; Am. J. Hum. Genet. 76:91–99, 2005; Ferreira, Grati FR et al, Prenat 2016 Dec;36(12):1146-1155;

Screening programs for T21

- Developed starting from 70's: evolved considerably in the last few decades
- Recent developments in the cfDNA testing: DR ~99%; FPR<0.1%</p>

cfDNA testing performances: a meta-analysis

Turno of	number of trisomic non-trisomic		Singleton pregnan	cies: weighted pooled			
Type of	studies	cases	cases	DR	FPR		
aneupiolay	n	n	n	(95% CI)	(95% CI)		
T21	20	1 062		99.7%	0.04%		
121	50	1,905	223,032	(99.1-99.9)	(0.02-0.08)		
T10	25	560	212 010	98.2%	0.05%		
110	25	500	212,019	(95.5-99.2)	(0.03-0.07)		
T1 2	10	110	212 002	99.0%	0.04%		
112	10	119	212,885	(65.8-100)	(0.02-0.07)		
	22	26	7 677	95.8%	0.14%		
45,8	25	50	//0//	(70.3-99.5)	(0.05-0.38)		
other SCA	11	17	E 202	100.0%	0.003%		
other SCA	11	17	5,565	(83.6-100)	(0-0.07)		
Tupo of				Twin pregnancie	es: weighted pooled		
rype Oj anounloidu				DR	FPR		
aneupiolay				(95% CI)	(95% CI)		
T21	o	24	1 1 1 1	100.0%	0%		
121	0	24	1,111	(95.2-100)	(0-0.003)		
*peer-review stu	udies reportin	g on clinical	validation or imp	lementation of maternal of	fDNA testing in screening for		
aneuploidies in which data on pregnancy outcome were provided for more than 85% of the study population							

(January 2011-31 December 2016)

CFDNA TESTING CANNOT DETECT ALL FETAL CHROMOSOME ABNORMALITIES

CfDNA INFORMED CONSENT DISCLOSURES:

- Many fetal karyotype abnormalities cannot be identified
- Residual risk (RR) still remains
- It is crucial to provide accurate information on the actual rates of karyotype anomalies and RR at *all maternal and gestational ages*

A priori and residual risk

Fetal chromosomal risks from previous studies

Only for major aneuploidies that are obvious at birth (T21 and 18)

Inferred the risk for chromosome abnormalities in women <35y at birth</p>

Not take into account sonography, which is now a routine tool in prenatal

care

fetuses with anatomical abnormalities may have been included in these older datasets

Determination of the fetal chromosomal risks stratified according to MA and GA

Enrolled population

- Unbiased retrospective analysis anonymized, database-stored cytogenetic diagnostic results on 129,263 samples of CVS (n=41,782) and AF (n=87,481);
- Indication: MA, anxiety or elective decision (\geq 35y and <35y)
 - NO other pretest risk factors aside from MA (no increased serum screening, negative family history)
 - NO obvious sonographic abnormalities detected prior to the procedure
- TOMA lab institutional review board approval (#0000015)

A PRIORI RISK OF A WOMAN TO CONCEIVE A CYTOGENETICALLY ABNORMAL FETUS

Stacked bar plot of the frequency of each chromosomal defect for each maternal age, and gestational age group.

Data on ~90,000 amnioc and ~40,000 CVS,

Effect of MA and GA on the a priori risk for fetal chr abnormalities

	Risk for a o visible abe	cytogenetically genomic erration	Overall risk for	cytogenetic abn at >15GA (including WHITE b
MA (years)	<15w 1/X	≥15w 1/X	♦ 18y : 1/30	1
18	272	301		48y - 1/9
19	266	295	♦ 48v: 1/9	
20	260	288	1 1	
21	252	280		
22	244	272		
23	235	263		
24	225	252		
25	213	241		
26	201	229		
27	188	216		
28	174	202		
29	160	188		
30	140	1/3		
31	132	142		
32	104	142		
34	01	112		
35	79	98		
36	68	85		
37	58	73		
38	50	62		18y_1/201
39	42	52		104 -1/201
40	35	44		
41	29	36		
42	24	30		
43	20	25		
44	16	20		
45	13	16		
46	11	13		
47	9	11		
48	7	9		18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Ferreira, Grati FR et al, Prenat Diagn. 2016 Dec;36(12):1146-1155

Effect of MA and GA on the a priori risk for fetal chr abnormalities

- The risk for common trisomies increases with MA
- In young women: risk is dominated by SCAs and other autosomal unbalanced rearr (red/pink)
- In older women: common trisomies dominate the risk (blue)

Ferreira, Grati FR et al, Prenat Diagn. 2016 Dec;36(12):1146-1155

◆ Lower frequency of the common trisomies than reported from previous studies, in which sonographic findings were not available

Frequency of chromosomal aneuploidies is significantly higher in earlier GA

◆ CVS 2.63% (1100/41782) VS AF 1.82% (1596/87481); OR 0.6873 (95%CI 0.659-0.7428)

Residual risk after a negative screening result

	Risk for a cytogenetically visible genomic aberration		ly Proportion, of the risk for fetal T21, 18 or 13		Risk for dis than T21,	Risk for disorders othe than T21, 18 and 13		of the risk for 13 or SCAs	Risk for disorders other than T21, 18 and 13 and SCAs		
MA (years)	<15w 1/X	≥15w 1/X	<15w %	≥15w %	<15w 1/X	≥15w 1/X	<15w %	≥15w %	<15w 1/X	≥15w 1/X	
18	272	301	7.5	3.8	294	313	51.9	53.1	565	642	
19	266	295	8.8	4.6	292	309	52.7	53.2	562	630	
20	260	288	10.5	5.5	290	305	53.5	53.3	559	617	
21	252	280	12.3	6.6	288	300	54.6	53.5	555	603	
22	244	272	14.5	7.9	285	295	55.7	53.8	551	589	
23	235	263	16.9	9.4	283	290	57.0	54.2	546	574	
24	225	252	19.6	11.1	279	284	58.4	54.8	540	558	
25	213	241	22.6	13.2	276	278	60.0	55.5	534	542	
26	201	229	25.9	15.6	271	271	61.8	56.4	526	526	
27	188	216	29.5	18.3	267	264	63.6	57.5	517	509	
28	174	202	33.2	21.3	261	257	65.6	58.8	507	491	
29	160	188	37.2	24.7	255	249	67.7	60.4	495	474	
30	146	173	41.2	28.4	248	241	69.7	62.1	482	456	
31	132	157	45.3	32.3	241	233	71.9	64.1	467	438	
32	118	142	49.4	36.6	232	224	73.9	66.2	451	420	
33	104	127	53.4	40.9	223	215	76.0	68.4	433	401	
34	91	112	57.3	45.4	213	205	77.9	70.8	413	383	
35	79	98	60.9	49.9	203	196	79.7	73.2	391	365	
36	68	85	64.4	54.4	192	186	81.5	75.6	368	347	
37	58	73	67.6	58.7	180	176	83.0	77.9	344	329	
38	50	62	70.5	62.8	168	166	84.5	80.2	319	312	
39	42	52	73.2	66.6	156	156	85.8	82.3	294	295	
40	35	44	75.6	70.2	143	146	86.9	84.3	268	278	
41	29	36	77.8	73.5	131	136	88.0	86.2	242	262	
42	24	30	79.7	76.4	119	127	88.9	87.9	217	246	
43	20	25	81.5	79.1	107	118	89.8	89.4	194	231	
44	16	20	83.0	81.5	96	109	90.5	90.7	171	217	
45	13	16	84.4	83.6	85	100	91.2	91.9	150	203	
46	11	13	85.7	85.4	75	92	91.7	92.9	131	189	
47	9	11	86.8	87.1	66	84	92.3	93.9	113	176	
48	7	9	37,8	88.5	58	76	92.7	94.6	97	164	

Ferreira, Grati FR et al, Prenat Diagn. 2016 Dec;36(12):1146-1155

Effect of MA and GA on the residual risk for chr abnormalities not targeted by non-invasive screening strategies

- Clinically significant chromosomal abn *other than* T21,18,13,SCAs at >15GA:
 - 18y: 47% of the a priori risk
 - 48y: 5% of the a priori risk

Ferreira, Grati FR et al, Prenat Diagn. 2016 Dec;36(12):1146-1155

SUBMICROSCOPIC CHROMOSOME ABNORMALITIES

Newer technologies impact the epidemiology of fetal chr abn:

◆ pCNV or likely pCNVs prevalence (by CMA) in women with anatomically normal fetuses with normal karyotypes is 1.65% (1/61)

- Clearly pCNVs: 0.5% 95th% Cl 0.2–0.8
- pCNVs with variable expressivity: 0.6% 95th% CI 0.3–1.1
- Likely pVOUS: 0.6% 95th% CI 0.3–1.1
- ◆ Lack of association with MA, serum screening analyte levels or GA
 - prevalence fixed at 1.65% (1/61) in all women

A PRIORI RISK OF A WOMAN TO CONCEIVE A CHROMOSOMICALLY ABNORMAL FETUS

Stacked bar plot of the frequency of each genomic defect for each maternal age, and gestational age group (no balanced rearr) TOMA lab DataBase

EFFECT OF MATERNAL AGE ON THE A PRIORI RISK

- In younger ages the non-agedependent pCNVs dominate fetal risk
- CNVs represent the main component of the a priori risk for fetal genomic abnormalities in younger women:
 - ◆ 80% of the risk in 18y
 - 15% of the risk in 48y

Effect of MA and GA on the residual risk for chr abnormalities not targeted by non-invasive screening strategies

- Residual risk for other 'off-target' clinically significant genomic abn
 - other than T21,18,13
 - other than T21,18,13, homogeneous SCAs

Ferreira, Grati FR et al, Prenat Diagn. 2016 Dec;36(12):1146-1155

PROPORTION OF DEFECTS DETECTED BY THE DIFFERENT TESTING STRATEGY

- After the exclusion of T21,18,13&SCAs, the RR for other pathogenic GENOMIC abnormalities is still consistent
 - Not so much different in young ($^{1}/50$) and old women ($^{1}/40$)
- Even excluding pCNVs with variable expressivity and likely pVOUS, a residual risk of 0.5% (95th% CI 0.2–0.8) for pCNVs with highly penetrant phenotypes still remains: *level of risk to justify offering invasive testing*

PROPORTION OF DEFECTS DETECTED BY THE DIFFERENT TESTING STRATEGY

Uso appropriato delle tecniche di CMA (Chromosomal Microarray Analysis) nella diagnosi prenatale

SIGU Societa' Italiana di Genetica Umana SECO SCIETA' ITALIANA DI ECOGRAFIA OSTETIRICA E GINECOLOGICA METODOLOGIE BIOFISICHE UTUANTA DI ECOGRAFIA OSTETIRICA E GINECOLOGICA METODOLOGIE BIOFISICHE UTUANTA DI ECONTRA DI ECOGRAFIA OSTETIRICA E GINECOLOGICA EMETODOLOGIE BIOFISICHE UTUANTA DI ECONTRA DI ECOGRAFIA OSTETIRICA E GINECOLOGICA EMETODOLOGIE BIOFISICHE UTUANTA DI ECONTRA DI ECOGRAFIA OSTETIRICA E GINECOLOGICA EMETODOLOGIE BIOFISICHE UTUANTA DI ECONTRA DI ECOGRAFIA OSTETIRICA E GINECOLOGICA EMETODOLOGIE BIOFISICHE UTUANTA DI ECONTRA DI ECONT

diagnosi prenatale

'... Le gestanti che , per scelta personale , in assenza di una indicazione che conferisca loro un rischio " a priori" elevato per le microdelezioni/microduplicazioni, decidano di sottoporsi ad una diagnosi prenatale invasiva, dovrebbero essere informate dell'esistenza del CMA come tecnica di approfondimento diagnostico, ad integrazione del cariotipo fetale. La sua applicazione in questa popolazione dovrebbe rispondere all'obiettivo di ridurre il rischio di sindromi note da microdelezione/microduplicazione associate a fenotipi clinici gravi....'

SUPPORTING WOMEN'S AUTONOMY IN PRENATAL TESTING

Supporting Women's Autonomy in Prenatal Testing Josephine Johnston, L.L.B., M.B.H.L., Ruth M. Farrell, M.D., and Erik Parens, Ph.D.

'Early and noninvasive fetal genetic sequencing is on the horizon. Such expanded prenatal testing could offer patients substantial benefits. But current practices in prenatal screening and the complex nature of genomic science and technology create the <u>risk that these tests</u> will be integrated into care without the robust, evidence-based informed consent processes <u>necessary for respecting women's autonomy</u>. If that happens, patients will be asked to decide whether to undergo invasive diagnostic testing and then to consider whether to terminate or continue their pregnancy without a full understanding of the results. ...'

Johnston, Farrell, and Parens. NEJM 377;6 August 10, 2017

'<u>The need for fully informed consent in prenatal screening and testing has never been more</u> <u>urgent</u>. Meeting this need will require adoption of **reimbursement policies and professional practice guidelines** that support clinicians in breaking with current routine practices, which too often involve dispensing with or failing to adequately carry out an informed consent process. It will also require **funding for development of approaches to pretest and posttest education and counseling** that empower patients to decide whether to be tested and what to do after receiving their results.' ...

'Only with these practices and policies in place can women's decisions about prenatal screening, diagnostic testing, and termination or continuation of pregnancy be truly free and informed.'

Resources:

- Professional societies provide uniform educational materials for providers and women
 - Movies
 - Brochures
 - Slide decks
- Online and residential courses for providers
- Pratice with simulation
- Uniform informed consent (legally revised)

New tools:

- Movies for pretest counseling (@home)
- Apps and softwares to support calculation of RR during pretest counseling
 - Specific MA and GA
- Tele-counseling with recording of the informed consent
- Furum of professional societies on social media

New education strategies:

- Anticipation in preconceptional period
- Social media
- Family doctors
- Teens (reproductive risk education)

Perinatal Quality Foundation

https://www.perinatalquality.org/

Resources:

◆ GSF and PQF focus on improving the quality of communication regarding prenatal testing options

◆ The PQF educates obstetricians to help facilitate quality perinatal patient care. They have developed genetic education modules (GEM) for patients considering prenatal testing to help empower patients to make informed decisions.

ISPD Global Updates (July/August 2017) – Genetic Counseling SIG

http://ispdhome.org/ISPD/Special Interest Groups/Genetic Counseling/ISPD/SIGs/Genetic c Counseling.aspx?utm source=Informz&utm medium=Email&utm campaign=eBlasts#G U817

Susan Gross Jose Ferreira Komal Bajaj

CfDNA vs. CVS in the high risk patients?

Increased a-priori risk for genetic abnormalities in pregnancies with U/S abnormalities

Type of genomic disorder	Type of test on CVS/AF	Resolution
Cytogenetic abnormalities	Karyotyping	>5-7Mb
Submicroscopic dels/dups	CMA	Kb> <5Mb
Monogenic disorders	WES	bp
Imprinting disorders	Different molecular tests	Epigenetic

Channel about allow	- 25	25	US fetal	Bal. chr. abn. in	sSMC or mosaic in	Previous affected child	Increased risk at screening	Confirmatory amniocentesis	One or more spontaneous	Chr. abn.	Onton	Subtotal
	<35 years	\geq 35 years	abnorm.	a parent	a parent	or retus	test	after LVS abn.	abortions	in a relative	Uther	(no. cases)
Total number of cases analyzed	5,400	20,502	2,297	195	23	1,034	473	-	43	165	526	30,658
No. of HR + IR karyotypes	66	496	640	22	1	22	36	_	8	2	4	1,297
Frequency of HR + IR karyotypes (%) AF	1.22	2.42	27.86 *	11.28	4.35	2.13	7.61	-	18.60	1.21	0.76	4.23
Total number of cases analyzed	22,527	47,987	2,426	225	35	835	7,997	692	190	1,025	531	84,470
No. of HR + IR karyotypes	137	682	278	2	1	6	182	35	6	9	6	1,344
Frequency of HR + IR karyotypes (%) US fetal abnorm, ultrasound fetal abnorma	0.61 ** alities; Bal. Chr. abi	1.42 ** n., batanced chron	11.46	0.89 malities; sSMC,	2.86 small supernum	0.72 erary chromoso	2.28 ome marker; CV,	5.06 chorionic villi; AF, amnio	3.16 tic fluid; HR, high risi	0.88 s; IR, intermediate ri	1.13 isk.	1.59
* OR 15.58	, 95%	CI 13	.71-:	17.7(C							
** OR 31.2	2, 95	%CI 2	4.09	-40.4	46							
*** OR 8.9	8, 95	%CI 7	.76-2	10.39	Э							
**** OR 2	1 1 5 0	95%C	117	16-2	6 08							

Grati et al, Am J Med Genet Part A 152A:1434–1442.

Chromosome abnormalities in CVS of pregnancies with U/S abnormalities

Grati et al, Am J Med Genet Part A 152A:1434–1442; Grati et al, Unpublished data

cfDNA TESTING IN FETAL ANOMALIES ON ULTRASOUND

Benachi et al. Obstet Gynecol. 2015 Jun;125(6):1330-7

Increased a-priori risk for genetic abnormalities in pregnancies with U/S abnormalities

Type of genomic disorder	Type of test on CVS/AF	Resolution
Cytogenetic abnormalities	Karyotyping	>5-7Mb
Submicroscopic dels/dups	CMA	Kb> <5Mb
Monogenic disorders	WES	bp
Imprinting disorders	Different molecular tests	Epigenetic

INCREMENTAL YIELD BY MICROARRAY WITH NORMAL FETAL KARYOTYPE

• 5.6% (95% CI 4.7-6.6) structural ultrasound anomaly restricted to one anatomical system and a normal karyotype

• 9.1% (95% CI 7.5-10.8) poly-malformed fetuses

	Isolated anomalies								
	Cardiac	Resp	CNS	Facial	MSK				
Pooled	22/476	5/81	35/563	6/113	24/305				
prevalence	4.6%	6.2%	6.2%	5.3%	7.9%				
(95% CI)	(2.7-6.5)	(0.9-11.4)	(4.2-8.2)	(1.2-9.4)	(4.8-10.9)				

	Isolated anomalies								
	GIT	Urogenital	NT >3.5 mm	Cystic hygroma	Total				
Pooled	7/105	9/153	5/162	12/262	125/2220				
prevalence	6.7%	5.9%	3.1%	4.6%	5.6%				
(95% CI)	(1.9-11.4)	(2.2-9.6)	(0.4-5.7)	(2.0-7.1)	(4.7-6.6)				

High post-test residual risk for fetal pCNVs

5-6 CNVs represent only a *portion* (~20%) of the overall pCNVs that can affect the fetus

False reassurance to patients – consistent residual risk

Wapner et al, NEJM 2012; Yaron et al, Obstet Gynecol. 2015 Nov;126(5):1095-9; Grati FR, Ultrasound Obstet Gynecol. 2016 May 31. doi: 10.1002/uog.15975

Increased a-priori risk for genetic abnormalities in pregnancies with U/S abnormalities

Type of genomic disorder	Type of test on CVS/AF	Resolution
Cytogenetic abnormalities	Karyotyping	>5-7Mb
Submicroscopic dels/dups	CMA	Kb> <5Mb
Monogenic disorders	WES	bp
Imprinting disorders	Different molecular tests	Epigenetic

WHOLE EXOME SEQUENCING IN FETAL ANOMALIES ON U/S – ON THE HORIZON

WES examines coding regions (exons) of the genome

Drury et al, Prenatal Diagnosis 2015, 35, 1010–1017; Pangalos et al, DOI 10.7717/peerj.1955; ACOG and sMFM Committee opinion Number 682, December 2016

WHOLE EXOME SEQUENCING IN FETAL ANOMALIES ON U/S – ON THE HORIZON

- Aimed to identify the etiology for fetal U/S abnormalities
- Actually not recommended outside of the context of clinical trials
- Offered on research basis in some labs or for specific clinical indications in other labs (recurrent or lethal fetal anomalies)
- Limited published data on prenatal application of WES
- Monogenic diseases may be identified in up to 20-30% of fetuses with multiple anomalies suggestive of a genetic disorder for which karyotyping and CMA are normal
- Provide options of PGD or early prenatal diagnosis in a future pregnancy

Increased a-priori risk for genetic abnormalities in pregnancies with U/S abnormalities

Type of genomic disorder	Type of test on CVS/AF	Resolution
Cytogenetic abnormalities	Karyotyping	>5-7Mb
Submicroscopic dels/dups	CMA	Kb> <5Mb
Monogenic disorders	WES	bp
Imprinting disorders	Different molecular tests	Epigenetic

Normal fetal karyotype and normal CMA!!

Imprinting Syndromes and fetal U/S abnormalities

UPD11pat or other related imprinting defects

A					В	С
стр		A.E.	в	Drauk	D1151923	156 162 168 174 180 186 192
51K	1/1	AF	P	Kesuir		
D11520/1	1,3	4,4	2.4	isoUPDpar	380.5] 394.2]	
D1151363	1,2	1,1	1,2	NI	M	
D115922	1,1	1,1	1,2	N	- alland	
D11S4046	2,3	1,1	1,4	isoUPDpat	396.5	AF
D11S4088	1,3	2,2	2,4	isoUPDpat	▲F [387]] \	×.M
D11S1923	1,2	3,3	3,4	isoUPDpat	[200.4]	
D11S4146	1,2	1,1	1,1	NI	396.5	S/To/C1-2
D11S2345	2,3	1,1	1,4	isoUPDpat	P //	M.
D11S988	1,2	1,1	1,2	NI		
D11S4181	1,1	1,1	1,2	NI		B/Pa
D11S1760	3,4	2,2	1,2	isoUPDpat	96 99 1021051081111	14117 July
D11S1338	1,2	1,1	1,2	NI	145.2 159.4	
D11S995	1,1	1,1	1,2	N	MA A	U/Lu/C3/H
D11S871	2,3	3,3	1,3	NI	- Marke	M
D11S986	1,3	2,2	2,4	isoUPDpat	157.4	
D11S1303	1,2	2,3	2,3	no UPDpat	AF AL	CNS
D11S4191	2,3	3,4	1,4	no UPDpat		MM
D11S987	2,4	1,4	1,3	no UPDpat	157.3 165.5	
D11S911	1,3	1,2	1,2	no isoUPDpat	Promonth aller	un II
						Mill

Beckwith–Wiedemann syndrome (BWS) in fetuses with:

- isolated omphalocoele
- overgrowth
- polydramnios
- enlarged placenta
- distended abdomen
- visceromegaly
- macroglossia

Imprinting Syndromes and fetal U/S abnormalities

UPD7mat or other imprinting defects

Silver Russell syndrome (SRS) in fetuses with:

- IUGR
- Micrognathia
- CHD
- clinodactyly
- Partial or total asymmetry

cfDNA TESTING IN FETAL ANOMALIES ON ULTRASOUND

Beulen et al, Ultrasound Obstet Gynecol. 2016 Aug 12. doi: 10.1002/uog.17228

Residual Risk

Ultrasound abnormality: is there a role for NIPT?

Limited clinical utility in high risk cases

Potential for delayed diagnosis, additional cost, and anxiety for patients

Grati FR and Benn P, accepted reply letter to Fiorentino et al, Prenat Diagn. 2017 Jun;37(6):593-601; Courtesy: Thomas J Musci;

Ultrasound abnormality: is there a role for NIPT?

Which screening strategy?

COMPARISON OF DIFFERENT SCREENING STRATEGIES FOR THE DETECTION OF THE OVERALL FETAL CYTOGENETIC ABNORMALITIES AT BIRTH

Acronym	Screening stategy	First-tier test	Second-tier test	Third-tier test
FTS	Combined first	Combined FTS	Karyotype if risk is ≥1/270	//
	trimester			

PROPORTION OF CHR DEFECTS DETECTED BY THE DIFFERENT TESTING STRATEGIES

- The distribution and prevalence of the chr abn are different at different MA
- Although two strategies may show approximately the same overall DR, one may favor the detection of a different subset of chr abn compared with another one

WHICH SCREENING STRATEGY?

Grati et al, manuscript in preparation

False positive rate of screenings

Compared with traditional serum±ultrasound screening (TSS), cfDNA tests have a much lower FPR for T21,18,13

The higher FPR of TSS was often considered a limitation

Distinct advantage with TSS due to NT's ability to pick up additional chromosomal

abnomalies ('off-target') in addition to the higher reflex invasive testing rate

◆ AIM: present detection rates of <u>all</u> (target and off-target) fetal karyotype

abnormalities at birth by different screening strategies including cfDNA test and TSS

A PRIORI RISK OF A WOMAN TO CONCEIVE A CYTOGENETICALLY ABNORMAL FETUS

Stacked bar plot of the frequency of each chromosomal defect for each maternal age, and gestational age group.

Data on ~90,000 amnioc and ~40,000 CVS,

PROPORTION OF THE CHROMOSOMAL DEFECTS OCCURRING AT BIRTH DETECTABLE BY DIFFERENT TESTING STRATEGIES

Methods

- ◆ **Prior risks** for each defect derived from TOMA lab Dataset of \approx 130K prenatal dx on CVS (n=43K)
- and AF (n=87K) with an indication of AMA, anxiety and elective decision (reported by clinicians)
- Fetal loss rate at birth for T13,18,21°
- Sensitivities and specificities for common aneuploidies and triploidy abstracted from the published literature:
 - Serum screenings for T21,18,13, MX, triploids: from prior seminal studies* (5% cumulative FPR)
 - *cfDNA testing:* 0.13% cumulative FPR for T21,18,13; 0.273% cumulative FPR for T21,18,13+SCAs^
- Sensitivity for other karyotype abnormalities correspond to the FPR of TSS or cfDNA tests
- No result rate with cfDNA testing of 1%: the DR for all chr abnormalities was adjusted downward
- as a 1% of 'no result' cases by cfDNA are actually undetected karyotype abnormalities

THE ROLE OF 'MATERNAL AGE' TODAY

Encephalocoele → 46,XX,rec(5)dup(5q)inv(5)(p15.2q32)

Ventriculomegaly \rightarrow 47, XY, +15

Hydrocephaly \rightarrow 69,XXY

20800888		ŝ	88	17.5
តិតិតិនិតិតិតិតិតិត	200	ត្តីសិតិត 10	888	1 88
A A A A A A A A A A A A A A A A A		24 28 28 16	基荷森 17	####
*** ****	6 A A	* 2 4	30	8
19 20	21	22 10 10 10 10 10 10 10 10 10 10 10 10 10	¥ 9	,

An encephaly \rightarrow 47,XX,+9

Polymalformed fetus (ndd) \rightarrow 46,XY,r(22)(p11.2q13.3)

INCREMENTAL YIELD BY MICROARRAY WITH NORMAL FETAL KARYOTYPE

Fetuses with CHD ± extracardiac defects (systematic meta-analysis)

◆ Pooled analysis: 7.0% (95% CI, 5.3–8.6%) incremental yield by CMA (excluding 22q11 microdeletion cases);

◆ Incremental yield increases to 12% (95% CI, 7.6–16%) when 22q11 deletion cases were included

- Stratified analysis: incremental yield
 - 3.4% (95%CI 0.3–6.6%) for isolated CHD
 - 9.3% (95%CI, 6.6–12%) when additional extracardiac malformations were present

ROLE OF CMA IN ANATOMICALLY ABNORMAL FETUSES AND NORMAL KARYOTYPE

• 1 in every 20 anatomically abnormal fetuses with a normal karyotype shows a submicroscopic CNV that explains its phenotype and provides prognostic information

• Professional societies recommend prenatal invasive diagnosis with CMA as first-tier test on AF/CVS in CHD[^]

- Many different submicroscopic and monogenic causes for CHD
- Association between CHD and neurodevelopmental delay

PROPORTION OF THE CHROMOSOMAL DEFECTS OCCURRING AT BIRTH DETECTABLE BY DIFFERENT TESTING STRATEGIES

- cfDNA-TXY has the highest DR at all MA;
- SEQ has the lowest DR, approximating the QUAD only at older MA: with SEQ the second-tier cfDNA-T drops down by 40-folds (from 5% to 0.13%) the FPR of the strategy, thereby reducing the likelihood of finding other off-target chr abn
- Solution performing follow up karyotyping CON is always better than SEQ thanks to the larger population performing follow up karyotyping
- Among TSS, INT has the highest DR, at the cost of a late GA reporting
- cfDNA-T equals or is better than CON or FTS only at older MA, when trisomies dominate the risk

